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Abstract

In this paper a simple mathematical model is used to describe the curved, turbulent plume
formed by injecting a constant flux of buoyant fluid into a stationary, unstratified ambient at
an angle to the vertical. The main assumptions are the entrainment assumption : the entrain-
ment into the turbulent plume is at a rate proportional to the local mean along-plume
velocity, and the Boussinesq approximation : the density difference between the plume and

the ambient is relatively small. A unified theory is presented which allows practical predic-
tions to be made of plume trajectories and concentrations without recourse to complex

turbulent modelling . It is found that all such plumes can be traced back to a virtual origin,

and that the shape of the plume depends only on the angle of the plume to the vertical at the
virtual origin . Various properties of the plume such as mean velocity, radius and density are

predicted as functions of distance along the plume . Angled plumes made in laboratory
experiments are described and compared with the theoretical predictions . The applications

and limitations of the theoretical model are discussed .

1 . Introduction

Forced, angled plumes occur in a variety of situations, wherever relatively

dense or light fluid is injected at an angle into a large body of fluid . Thus this flow

occurs both naturally and due to the action of man ; for example in magma

chambers, flows into lakes and seas (especially where the outflow is below the

surface), sewage outfalls, ventilation systems, accidental leaks of gases and other

hazardous materials and vehicle exhausts . In such flows the plume of relatively

light (or dense) fluid will be turbulent and ambient fluid will be mixed into the

plume by turbulent eddies. This paper describes a simple theoretical model of

these forced, angled plumes which shows how all such plumes can be traced back

to a virtual origin. Furthermore, the model shows that the shape of the plume

depends only on the angle of the plume to the vertical at the virtual origin .
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The nature of plumes rising from sources of buoyancy and momentum has
been discussed and described by many authors . Morton et al. [1] set out an
analysis of a source of buoyancy, and Morton [2, 3] extended this to allow for
a source of buoyancy, mass and momentum. Morton only considered the case
where momentum is in the vertical direction and of the same sign as the
buoyancy forces: the so called "forced plume" . Germeles [4] considered the case
of momentum at an angle to the vertical but his analysis breaks down for
horizontal plumes. Numerical schemes for evaluating forced, angled plumes
from a given set of initial conditions have been described by Schatzmann [5]
and Hofer and Hutter [6] . This paper sets out a more general, though simple,
analysis of maintained, forced, angled plumes in an unstratified and stationary
ambient fluid, with the results given in a form of practical use .

In order to describe this process a simple "entrainment assumption" is made,
first proposed by Taylor [7] . The analysis in this paper is based on this
assumption and the development of it by Morton et al . [1] and Morton [2, 3] . If
the flow is fully turbulent (i .e. independent of Reynolds number) then the flow
of ambient fluid into the plume may be described in terms of the relative
velocity of the plume to the ambient fluid . The entrainment assumption states
that the rate of transfer of ambient fluid into the plume, characterised by an
inflow speed of ambient fluid perpendicular to the plume axis, is proportional to
the mean centre-line speed of the plume (see Fig. 1). The (constant) ratio of
inflow speed to plume speed will be denoted by a .

It is known that, for a vertical plume, properties such as time-averaged
velocity and density difference follow a Gaussian distribution across the plume
(see List [8], for a review), but it is adequate to assume a "top-hat" profile for
such quantities, i .e. a uniform value across the plume and zero outside the
plume. In fact, provided it is assumed that the profiles are similar at all positions
along the plume, the analysis is not substantially altered by this assumption [2,
3] . The length-scale over which the density difference profile spreads is known to
be larger than that over which the velocity profile spreads . We will use ~ to
denote the ratio of transverse length scales of density and velocity, and take it to
be 1.1 based on the results of the experiments mentioned above .

In vertical plumes in unstratified surroundings the entrainment assumption
is equivalent to assuming that the plumes are self-similar [9] . We will take
a=0.1 from the results obtained by many experimenters [10-12] . The nature of
the entrainment, and thus the value of a, may vary between different parts of
the flow depending on the relative importance of buoyancy and momentum, but
we will ignore such variations since the dominant effect in this problem is the
change in entrainment due to the variations in the plume speed at different
points on the plume. Thus we are using a somewhat approximate, representat-
ive value of a. We will discuss variations in a in more detail in the concluding
section. We will also assume that fluxes due to variations from the mean flow
("turbulent transports") are insignificant compared with the mean fluxes .

We will assume, further, that the density difference between the plume and
the ambient fluid is relatively small (the Boussinesq approximation) and that
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Fig. 1 . Idealised view of a vertical plume, with mean centre-line speed W and radius R. The
plume entrains ambient fluid characterised by a mean entrainment velocity proportional to
the centre-line speed .

the fluid is incompressible. The Boussinesq approximation is not a serious
restriction in practice since many of the applications involve relatively small
density differences . Also the density difference decreases rapidly away from the
source, due to entrainment, and so even when this approximation is not valid
near the source it will be valid some distance (usually small) from the source .

The case of forced vertical plumes is re-analysed in Section 2 . We develop
a new classification and show that vertical plumes fall into three classes
depending on the direction of the momentum flux at the virtual origin . The
model for angled, forced plumes is given in Section 3 and solutions of the
equations for a comprehensive range of source conditions is given in Section 4 .
These solutions are discussed in Section 5 . Experiments on laboratory plumes
are described and compared with the model in Sections 6 and 7, and the
conclusions of the work are given in Section 8 .

2. Vertical forced plumes

We begin with the case of vertical forced plumes in uniform surroundings .
Although this has been discussed before (see, for example, Ref. [9], chapter 6)
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the results will be presented in a new way which clarifies the division of
vertical plumes into three basic categories, namely buoyant jets, mass-sources
and pure plumes . This analysis also leads more naturally into the case of
plumes directed at other angles, which will be discussed in the later sections .
Under the assumptions detailed above, and taking top-hat profiles, the equa-
tions of conservation of momentum, mass and buoyancy are, respectively,

d(W2 R2 )/dZ=g'(AR) 2 ,
d(WR2 )/dZ=2RaW,

	

(1)

d(g WR2 )/dZ= 0.

Here W is the plume speed, R the plume radius, Z the vertical position and
g' =gAp/p is the reduced gravitational acceleration. We will take g' to be positive
and Z to increase along the direction of the buoyancy force, so that Z increases
upward for buoyant plumes and downward for negatively buoyant plumes .

It is useful to define

F=g' WR 2 ,
K=WR 2 ,

	

(2)

P= W 2R2 .

The quantities F, K and P are proportional to the fluxes of buoyancy, mass and
momentum, respectively . It can be seen immediately from eq. (1) that the
buoyancy flux is conserved along the plume and thus

F=Fs , constant,

	

(3)

and Fs is taken here to be positive .
Equations (1) will be non-dimensionalised by the following transformations

(using lower-case to denote non-dimensional quantities) :

p=P/Ps,

k=(2/(2(x)112')Fs12Ps 514K,

z=((2a)1i2A)Fs''2Ps 3142,

	

(4)

r = (z/Z) R,
where Fs and Ps are the values of F and P at the source (the subscript S will
refer to conditions at the source throughout this analysis) . Substitution of (4)
into (1) and (3) leads to

pp' '=k,
(5a)

k'=IpI
where the primes indicate differentiation with respect to z (except for g') . The
initial conditions are
p=1 and k=ks =(2./(2a)" 2 )FSJ 2 Ps 5 "4 Ks

	

(5b)
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Integration of (5a) and applying the initial conditions (5b) gives

(5)(1p1 512 -1)=k2 -k2s .

	

(6)

Curves of p against k are plotted in Fig. 2 . At the source p =1, and from (1 a) it
can be seen that the momentum flux increases with distance from the source
and this is represented on Fig . 2 by the region p > 1 . In the region p < 1 the
solution has been integrated back to a "virtual origin" where the mass flux, k,
and hence the plume radius are both zero . The momentum flux, p, is not, in
general, zero at the virtual origin and the sign of p at k = 0 determines the
nature of the plume . From (6) it can be seen that the momentum flux at k = 0 is
positive (negative) when the mass flux ks at the source is less (greater) than the
critical value kc = 2/ J5 .

For small values of the mass flux ks < kc , the momentum and buoyancy fluxes
at the virtual origin are in the same direction, and we will refer to this case as
the buoyant jet . The virtual origin lies behind the source and the initial spread
from the source is large . At large distances from the source the solution (for
k tending to infinity) asymptotes to that of a pure plume . A sketch of this case is
shown in Fig. 3a .
When ks = kc , the mass and momentum fluxes at the virtual origin are zero and

the flow is that of a pure plume . In this case the properties of the plume can be
derived directly from (5a) with the initial condition p =0 at k = 0. The solution is
well known; for the purposes of this analysis it is sufficient to note that the plume
is conical with the half-angle at the vertex being tan -1 (6x/5) as shown in Fig . 3b .

Fig . 2 . Momentum and mass fluxes for vertical plumes (non-dimensionalised with respect to
the buoyancy and momentum fluxes at the source) . The source initial conditions are p =1 and
k = ks ; the solutions have been integrated back to the `virtual origin' where k = 0 (and thus
the radius equals zero) .
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For larger values of ks , so that ks > kc , p < 0 at the virtual origin . In this case
the momentum flux at the virtual origin has the opposite sign to the buoyancy
flux, and the virtual origin may be in front of the source . At these high values
of the source mass flux the plume behaves as though it initially flows backward
from the virtual origin, spreading with the same angle as for a jet, its mo-
mentum being decelerated by the buoyancy forces until it stops at some point
behind the source. It is then accelerated forwards through the source with the
required mass and momentum fluxes . This situation is sketched in Fig . 3c and
we shall refer to this flow as a mass source . It should be emphasised that the

i
-0 .40 0.00

T

0 .20

1

0 .40

Fig . 3 . The shapes of the different plumes
types: (a) buoyant jet, (b) pure plume, (c) mass
source. The lengths have been non-dimen-
sionalised with respect to the buoyancy and
momentum fluxes at the virtual origin . Note
that the horizontal scale is enlarged compared
with the vertical scale .
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region p < 0 in Fig . 2 is unphysical . We have not considered the case where the
momentum and buoyancy fluxes at the source have opposite signs . This model
does not allow for the plume overlapping itself, nor does it allow for the
entrainment of other than ambient fluid . The real source may be anywhere on
the upward flowing part of the shape in Fig . 3c, in particular the flow may
contract above the source before widening again . Note that the source diameter
is never much less than 0.4, in non-dimensional units, and so the plume shape is
very close to a buoyant plume only a few diameters from the source. For this
reason the mass-source type flow is generally regarded as an unimportant case
for vertical plumes, but we include it for completeness and for comparison with
downward pointing angled plumes for which the downward flowing part is
a physical solution since the plume would then entrain ambient fluid .

It is convenient to non-dimensionalise the equations of motion with respect to
the momentum flux at the virtual origin, P O , rather than that at the source . We
will denote this new set of non-dimensional quantities by the subscript 1, i .e .

P1= P/Po,

k1=(A/(2a) 1f2 )FS'2 Po 5f4 K,

z1=((2a)"2 2)FS' 2 P0 3J4 Z,

r1=(z,/Z)R, and so k,s=(~./(2a)1/2)Fs/2po 114Ks.

(7)

With this non-dimensionalisation the curves in Fig . 2 are reduced to the three
curves shown in Fig . 4. Instead of the source conditions being represented by
the point where p =1 and k = ks on Fig. 2, they are represented on Fig . 4 by the
point where p 1=p 1 s = Ps / Po and k 1 = k 1 s . This will be on the curve marked
"buoyant jet" if ks< kc : all curves above the pure plume curve are mapped onto
the jet-curve . Whereas it will be on the curve marked "mass-source" if ks>kc :
all curves below the pure plume curve are mapped onto the mass-source curve
(see Fig . 5) . The shape of the plume thus depends only on whether k s is greater
or less than kc . The size of the plume is determined by the length scale

L„=(1/(2a) 1 / 2A)Fs 1 ' 2 Po J4 ,

	

(8)

where PO = 11- a ks 12/5 PS (with ks defined in eq. 5b).
Note that as ks approaches kc , from either direction, the length scale tends to

zero, and hence the extent of the region where the plume shape differs signific-
antly from that of the pure plume also tends to zero and the non-dimensional
distance of the actual source from the virtual origin tends to infinity . In Fig. 6,
p 1 and k 1 are plotted against z 1 , and thus the position of the actual source in Fig . 3
can be found as the value of z1 for which k1=k1s . The part of the mass-source
curves where z 1 is decreasing as p t and k1 increase is not physical, it represents
a downward flowing plume entraining ambient fluid .
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Fig . 4. Momentum and mass fluxes non-dimensionalised with respect to the buoyancy and
momentum fluxes at the virtual origin . The family of solutions in Fig. 2 is reduced to just
three here.

0

Fig. 5. The non-dimensionalisation fromp= 1, k=ks , top, =p1s, k 1 =k 1S . All solutions in the
'jet region' are mapped to the buoyant jet curve, whilst those in the `mass source region' are
mapped to the mass source curve .

For the case of a pure plume, the distance Z v from the source to the virtual
origin is related to the source radius, R s , by

Rs = (6a/5) Zv ,
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Fig . 6. Momentum and mass fluxes as functions of height for the three plume types . (All
quantities non-dimensionalised with respect to the buoyancy and momentum fluxes at the
virtual origin.)

since, as mentioned above, the pure plume is straight sided . Consequently R is
given by

R=(Z+Zv )Rs/Zv .

Recall that Z is the distance above the actual source, and thus the results
familiar from similarity solutions of buoyant axisymmetric plumes are re-
covered,

W= Ws (R5/R) 113 = Ws (ZvI(Z+Zv))

p=pg'lg=Aps(RsJR) 513 =Aps(Zv/(Z+ZV)) 513 . (9)
ts

For the other plume types such quantities can be calculated from the values of
pl and k 1 given in Fig . 6,

Op=pg'/g=Lspskls/k1,

R=Rs(k1 /kls)(pls/p1) 1/2 ,

W-WS(klslk1)(p1/pls),

In order to understand the nature of the changing length scales and shapes,
consider a source of buoyant fluid with a fixed total flow rate but a variable exit
size. This fixes buoyancy and mass fluxes, but if the exit radius is reduced the
efflux velocity and thus the momentum flux must increase . Starting with
a large exit radius, Ps will be small and ks will be large. On changing scales to
pl and k 1 it can be seen that

	

is small and k ls is greater than kc . The source
will have the shape shown in Fig . 3 for a "mass source", with a large length
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scale (L y = (5311 ° /2) (Ks /4),2a4Fs )115, from eq. 8) and with the source position
close to z 1 =0. In practice the entrainment assumption is likely to be inaccur-
ate near such a source as the plume will not be fully turbulent there . This will
result in a more pinched shape than that shown in Fig . 3c .

As the exit radius is reduced so Ps increases. The shape of the plume will
remain the same but the length scale Lv will decrease, and so the plume will
tend to the straight-sided buoyant plume shape closer to the source . Also
z 1 will increase, so the actual position of the source will be higher on the mass
source shape (Fig . 3c) . As the radius is reduced further, k s approaches kc , and
Pls, k1s and z ls tend to infinity, the length scale L v tends to zero and the shape
will be that of a straight-sided pure plume (Fig . 3b). Reducing the radius still
further, k s becomes less than kc , and p i, k 15 and z ls are still large and the
shape is still close to that of the buoyant plume . Now, however, the plume
follows the "buoyant jet" shape (Fig . 3a) with the plume spreading at an angle
which decreases with height rather than increases as for the mass source shape
(compare Figs . 3a and 3c) . As the exit radius is further reduced k s tends to zero,
PO tends to Ps , the length scale, L, behaves like PsJ4, k 1 tends to ks and
z1s tends to zero (to the apex of the jet shape) giving an initial spreading angle
of tan -1 (2a).

3 . The model for forced, angled plumes

Now consider forced plumes where the initial momentum flux is not purely
vertical but is at an angle to the vertical . Again the entrainment assumption is
applied by stating that the inflow speed into the plume is proportional to the
speed along the centre-line of the plume . Ignoring the curvature of the plume
the "top-hat" equations become (for flow in an unstratified medium)

Momentum
vertical

	

d(WVR 2 )/dS=g'(AR) 2 ,
horizontal d(UVR2 )/dS=O,

	

(11)

Mass

	

d(VR2 ) /dS= 2Ra V,
Density

	

d(g' VR2 )/dS=O .
In this case U and W are the horizontal and vertical components of the
centre-line velocity, V= (U 2 + W2)112 , R is the radius of the plume and S is the
distance along the plume centre-line (see Fig . 7). As before g' =gAp/p is the
reduced gravity . The inclination of the plume to the horizontal, 0, is given (for
any point on the plume centre-line) by tan 0 = W/ U.

It is useful to define

F=g'VR2 ,

	

Q= VR 2 ,

	

M=V2R',

	

H= UVR2 ,

	

(12)

which are proportional to the total buoyancy, mass and momentum fluxes and
the horizontal momentum flux, respectively (compare with eq . 2).



G.F. Lane-Serff et al ./J. Hazardous Mater. 33 (1993) 75-99

	

85

Fig. 7. An idealised view of an angled plume . Compare this with Fig. 1 .

From (11) it can immediately be seen that the horizontal momentum flux, H o ,
and the buoyancy flux, FO , are conserved along the plume,

FO =g' VR 2 , constant,
(13)

Ho = UVR2 , constant.

These conserved quantities are used to define non-dimensional variables (in
this case there is no need to integrate back to the virtual origin to find
a meaningful scale for the momentum flux, unlike the vertical plume described
above)

m=M/Ho ,

	

q=(A/(2a)112)Ho 514Fo' 2 Q,
(14)

s=S/LA ,

	

r=R/LA ,

	

x=X/LA ,

	

z=Z/LA ,

where the length-scale is given by LA = (2 _../a)-1 Ho/4F 1 / 2 . The remaining
plume equations (11) then reduce to the pair of equations

m((m2-1)112)'=q,
(15)

q'= (m)li2
,

where the primes now represent differentiation with respect to s, i .e. along the
plume axis (except again for g') .

This form of the equations breaks down as 0 tends to ± n/ 2. In this limit, m > 1
and the equations become

mm'=q,

q'= (nt)' ''2,

which are the equations for a vertical plume given in eq . (5a) above .

(16)
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Otherwise, however, by substituting t =- (m2 -1)112 =tan 0, the equations can

be written

t' = ql (t2 + 1)1'2,

q' = (t2 + 1)1/4,

(17a)

This is the final form of the equations used in this model . The initial conditions

are

is=tan Bs,

	

qs=(A/(2a)1"2)Fo~2Ho 5"4Q5,

	

(17b)

where the dimensionless mass flux is obtained from (14) .

4. Solutions for forced, angled plumes

Equations (17a) were integrated numerically, using various initial values of

the inclination 0 and setting q initially to zero . All plumes can be traced back

to a virtual origin where q, the mass flux, is zero . Hereafter the subscript 0 will

refer to conditions at the virtual origin, the subscript S to those at the actual

source of a plume. (Note that F0 = Fs and Ho = Hs since these quantities are

conserved throughout the plume .)

The trajectory of the plume centre-line can be determined from

x' =cos 0

	

and

	

z' = sin 0 .

	

(18)

All other plume properties can be recovered from q and 0 :

Op = pg'I g = Aps qs /q,

M= Ho /cos 0,

(19)
R=Rs(glgs)(cos 0/cos 0s)1"2,

V= V (qs/q) (cos 0s/cos 0) .

Figure 8 shows the values of q and 0 along plumes for various values of 00 at

q=0. For any given real plume, qs can be calculated from (17b), which,

rearranged, gives

qs = ( ; / (2a) u2) (g'RI V )'I" (cos Bs)

	

(20)

The centre-lines of plumes with different angles at the virtual origin are

plotted in Fig . 9. The values of plume length s measured from the virtual origin

are given on both Fig. 8 and 9 to facilitate identification between them . The

position on Fig. 9 is determined by the value of s and virtual origin angle, 00,

found from Fig. 8. For example : if, for a given real plume, qs = 2 .5 and Os =10° at

the source then it can be seen (from Fig . 8) that this is equivalent to a position

part way along a plume whose initial conditions were q = 0 and 0 = - 60°, at
a distance 2.0 (measured along the plume axis) from the source . This is at
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3.00

Fig . 8 . Non-dimensionalised mass flux as a function of plume angle for various values of the
plume angle at the virtual origin . The solutions have been marked at points corresponding to
regular intervals measured along the plume centre-line to ease identification between this
figure and the next .

Fig. 9. Shapes of the centre-lines of angled plumes with the same range of initial angles as for
Fig. 8 . The marks on each solution are at regular intervals measured along the plume centre-line .

x= L3, z= -1 .4 on Fig- 9, the centre-line of the real plume is then given by
following the curve through (1 .3, -1.4) for higher values of s . The shape of
a plume depends only on its angle at its virtual origin, though its overall size
varies, depending on the length scale defined in (14) .
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The shape of the boundaries of plumes with various values of B o are shown in
Fig. 10, though note the warnings given below in interpreting these figures . It
is sometimes useful to know the lowest point reached by a buoyant plume
which has a downward component of momentum flux at the source . This can be
estimated by dimensional analysis : see, for example, Fischer et al . [11] .
A length-scale can be made from the buoyancy flux and the vertical component
of the momentum flux, (MO sin 00)314Fo 1/2, and it has been proposed that this
length-scale multiplied by a universal constant will give the lowest point of the
plume. Figure 11 shows the relationship between the lowest point, zM , mea-
sured from the virtual origin, and the value of 0 0 . Since this distance is
measured from the virtual origin this figure is most useful where the actual
source is close to the virtual origin, i .e. when qs is small . Note that in Fig. 11
the lengths are non-dimensionalised with respect to the buoyancy flux and the
total momentum flux at the virtual origin, rather than the horizontal
momentum flux, so Fig . 11 gives the relationship between the lowest point and
0 0 for a given total momentum flux at the virtual origin . The total momentum
flux at the virtual origin, proportional to M 0 , is related to the (constant)
horizontal momentum flux and thence the total momentum flux at the
source by

MO Cos 00 =H0 =HS = MS Cos OS .

	

(21)

It can be seen that the relationship between zM and 0o given in Fig. 11 is
a nearly linear one and it is significantly different from a curve of the form
(sin 00 )'' given by the dimensional analysis described above . Also plotted on
Fig. 11 are the results of laboratory experiments, described below . The larger
error bars at larger angles to the horizontal are due to features of the flow :
large eddies develop and though the boundary (of interest) of the plume is well
defined at any instant its position is subject to large fluctuations .

For such plumes it is also useful to know where the plume returns to its
original level (its "range") and its concentration there . In general it is neces-
sary to evaluate the behaviour of the plume from its initial conditions using
Figs. 8 and 9 and eq . (19) . If qs is small, however, the actual source is close to
the virtual origin and Os is close to 00 . Thus the range is (approximately) the
value of x where the plume returns to z =0 . Again, to make clear the depend-
ence on 0 0 , we will non-dimensionalise the mass flux and lengths with respect
to the total momentum flux, M 0 , so that

q1 =(%t/(2a)1/2)Mo 5/4 F
112 Q,

	

(22)
and the new length-scale is given by L1 =(it~,/a) -1 Mo'4Fo 1 /2 .

Figure 12 shows the range, both to the nearest point on the plume at z = 0,
denoted by x 1 B , and the distance to the centre-line at z = 0, denoted by x 1 c , as it
depends on 00 . Figure 13 shows l/q 1 at these positions, which is proportional to
concentration (see eq. 19), though note that the model assumes a top-hat form
of the concentration profile and this needs to be considered when evaluating
the value at the near boundary, x 1B .
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Fig . 10. Shapes of angled plumes showing the
centre-lines and upper and lower boundaries
of the plumes for various initial angles .
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Fig. 11 . Theoretical and experimental results showing the maximum depth that the lower
boundary of a downward angled plume reaches . The lengths have been non-dimensionalised
with respect to the total momentum flux (rather than the horizontal momentum flux) at the
virtual origin. The error bars reflect the uncertainties in the maximum depth due to
fluctuations of the turbulent plume .

Fig . 12. The distance from the virtual origin to the point on a downward angled plume where
it returns to its initial height, with x 1B the distance to the upper boundary, and x 1C the
distance to the centre-line .
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Fig . 13 . The value of 11q 1 at the point where a downward angled plume returns to its initial
height . This is a measure of the concentration at that point (see text) .

5 . Discussion of the theoretical results

Figure 14 shows the radius and speed of the plume as a function of position
along the plume centre-line for 0 0 = + 45", 0", - 45" . The results for 0 0 = + 45°
are similar to those for a vertical plume with, initially, a momentum jet
behaviour tending to a buoyant plume shape as in Fig . 3, but with the centre-
line following a curved trajectory . For 00 =0° (a horizontal jet) the results are
again similar but here the transition from momentum jet, with spreading angle
tan -1 (28), to buoyant plume, with angle tan -1 (6x/5), is somewhat sharper .

For negative 00 , however, a different phenomenon is apparent . The vertical
component of the velocity is initially negative and increases through zero as
the plume turns. Thus the total plume speed is decelerated more than in the
previous cases and the plume radius increases more than for a momentum jet .
The plume is then accelerated (the speed of the plume has a minimum in this
case as distinct from the previous cases where the plume speed decreases
monotonically) and the plume radius increases more slowly than for the
buoyant plume. In fact, for sufficiently steep negative angles the plume radius
actually decreases. The shape is similar to the "mass source" in Fig . 3. On
physical grounds the momentum jet-like behaviour can only be exhibited
where the plume momentum flux has a (positive) component in the direction of
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t 11

Fig . 15. Shape of plume when the initial angle is -80° showing the upper and lower
boundaries and the centre line . Notice that the upward flowing part of the plume overlaps the
downward flowing part, thus only that part of the shape beyond the overlap will be realisable
in practice .

the initial momentum flux. Thus once the plume turns and begins to rise it is
(essentially) equivalent to a source of mass and buoyancy and a relatively
small amount of horizontal momentum, placed at (approximately) the position
where the plume turns .

Figure 15 shows the predicted plume shape for 0 0 = - 80° and here the theo-
retical result has the plume overlapping a previous position . It is important to
note that the model is invalid in such regions since it does not allow for
re-entrainment of plume fluid. Thus for Oo = - 80° the model is only valid for
s > 2 .5, where the predicted shape is not overlapped by a previous part of the
flow. There is some overlap for d o steeper than approximately -75° .

It should also be noted that the top edge of the plume is unstable in that there
is light fluid below heavy fluid . Thus some fluid formerly in the plume will be
detrained and rise into the region above the plume . Thus the stable, lower
edges of the plume shapes shown in Fig . 10 will be sharply defined in practice,
whereas the upper, unstable edges will be poorly defined. See, for comparison,
the photograph of a real plume in Fig . 16, described below .

Fig . 14. The radius and along-axis speed of angled plumes as a function of distance along the
plume centre-line . Notice that there is a minimum in the speed for the initially downward
pointing plume .
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Fig. 16 . Shadowgraph of an angled plume . Here the injected fluid is denser than ambient so
the buoyancy forces act downward .

6 . Experiments

Forced plumes were produced by pumping salt water through a circular pipe
(1 .95 mm diameter) into a tank containing fresh water . Note that since the
injected fluid is relatively dense, the buoyancy forces on the plume act down-
wards, rather than upwards as was the case for the theory above . The tank
dimensions were 4 m long by 0 .3 m wide and it was filled to a depth of about 0 .5 m.
These dimensions are large compared with typical length scales of the flow and so
this configuration approximates an infinite, unstratified environment at rest . The
flow rate mQo was monitored with a flow meter and the buoyancy flux nFo and the
momentum flux nMo were determined from

Fo=gQo,

M = 4Q2 -2O - 3Qoa

where a is the pipe radius .
Typical pipe nozzle Reynolds numbers were in the range 1000 to 2500 and the

expression forMO is obtained assuming laminar Poiseuille flow in the pipe . The

(23)
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pipe was set at fixed orientations B o to the horizontal and the angles were
measured to an accuracy of 0 .5° .

The visualisation was carried out using a shadowgraph and estimates of the
maximum height were made from still photographs . A conductivity probe was
placed at a set of fixed positions in the flow and the salt concentration was
measured to obtain information about the structure and mixing in the plume .

7. Experimental results

An example of the flow with 0 0 = 60° is shown in Fig . 16. Close to the source
the plume is symmetrical but a pronounced asymmetry develops downstream .
The upper side of the plume remains sharp and well defined while the lower
side is diffuse and has no distinct edge even in an instantaneous picture as
shown in the shadowgraph. This asymmetry results from the opposite effects of
the buoyancy force on the two sides of the plume . On the upper side, buoyancy
forces create a stabilizing stratification which tends to inhibit entrainment of
the environmental fluid. On the lower side the buoyancy forces produce a con-
vectively unstable configuration and there is enhanced mixing between the
plume and the environment . Detrainment of plume fluid is observed on the
lower side, a feature which is not observed in vertical plumes .

Measurements of the structure of the plume were made for an initial inclina-
tion of 45° using a conductivity probe. Figure 17 shows the density contours in
a plane normal to the plume axis positioned at the point of maximum plume
height. The asymmetry between the upper and lower parts of the plume can be
clearly seen. Near the top of the plume there is a strong, stable density
gradient. Below the plume axis the dense fluid is mixing much more vigorously
with the surrounding fluid as a result of the gravitational instability . Density
profiles in a vertical plane containing the plume axis are shown in Fig . 18a .

-10 0

	

1 cm

Fig . 17 . Experimentally observed, time-averaged, measurements of concentration in a plane
perpendicular to the plume axis, at the highest point on the plume. The injected fluid was
denser than ambient, and injected at an angle of 45° above the horizontal . Notice the
detrainment of fluid from the lower, unstable edge of the plume .
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The asymmetry between the upper and lower parts of the plume is seen to
increase with distance downstream . The estimated plume axis (line of max-
imum density excess) is shown in Fig . 18b, as is the theoretically predicted
plume axis . The discrepancy is due partly to experimental errors, in particular
in measuring the source radius accurately and in measuring the relatively
weak concentrations far from the source, and partly due to using a fixed value
of a that is certainly too large for the jet part of the flow, and may be too large
for the mass-source part of the flow . The mean value of the density difference
on the plume centre-line is plotted on Fig. 19, as is the theoretical prediction.
Note that the observed density difference is generally larger than the predic-
tion, suggesting less entrainment than predicted (smaller cc), which would lead
to greater vertical acceleration .
The maximum height to which the upper plume boundary rose, zM , was

measured from photographs, and non-dimensionalised with respect to the
length-scale L 1 (see eq. 22). These results are shown on Fig . 11, where each
point represents the average over several experiments with different values of
the flow rate. The comparison with the theoretical results was discussed in
Section 4. Some experiments were performed with the tube set vertically, so

20 cm

10

0

Z

-10

20 c

10

-10

Fig . 18 . (a) Vertical, time-averaged concentration profiles measured at various points along
the plume centre-line . The injected fluid is denser than the surrounding fluid and was
injected at 45° . (b) Position of the plume centre-line estimated from the experimental results
shown in (a) (peak in density profile), with the expected centre-line for comparison . (Non-
dimensional scales .)
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TYN
CuV

Fig . 19. Density difference between the plume fluid and the ambient fluid from the experi-
ment shown in Figs. 16 to 18 (time-averaged on the plume centre-line), with the theoretical
result shown for comparison . (Non-dimensional scales .)

that the rising part of the plume entrains fluid that is falling back down . This
height cannot be predicted by the theory above, since it assumes that only
ambient fluid is entrained . These experiments gave a value of the maximum
height of zM (90°)=0.83±0.02, in agreement with the value found by Turner [12] .
Note that this is much smaller than the value of approximately 1 .8 predicted by
the model, which does not include re-entrainment of the plume fluid . Thus the
re-entrainment of plume fluid has a substantial effect on the plume .

8. Conclusions

The equations for a forced, angled plume can be simplified by non-dimen-
sionalisation with respect to two conserved quantities, namely the buoyancy flux
and the horizontal component of the momentum flux . All such plumes can be
traced back to a virtual origin, and the shape of the plume depends only on the
angle of the plume to the horizontal at this virtual origin . Vertical plumes can be
included in this scheme, with virtual origin angle ± 90° . All angled plume shapes
can be grouped into three categories, first introduced to describe vertical plumes :

(i) If the momentum flux at the virtual origin is zero then no angle can be
defined and we have the special case of the vertical, straight-sided, pure
plume, half-angle tan -1 (6x/5).
(ii) If the momentum flux at the virtual origin is upward (or horizontal) then
the plume spreads initially at a half-angle of tan -1 (2a) . We have referred to
this category as the buoyant jet . The plume centre-line curves towards the
vertical and the spreading angle tends (downward) to that of the pure plume .
The change from the jet spreading angle to the plume angle occurs more
sharply for plumes directed further from the vertical .
(iii) If the momentum flux at the virtual origin is downward then the initial
spread is as for a jet . In this case the fluid is decelerated by the buoyancy
force and the spreading angle increases . As the plume centre-line curves
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upward the fluid is accelerated and the spreading angle decreases, for plumes
with virtual origin angle less than approximately -60° the radius actually
decreases. As the plume centre-line curves upward the spreading angle tends
(upward) to that of the pure plume. This category we have referred to as the
mass-source . In this case the mean along-plume velocity has a minimum and
a maximum (see Fig . 14), whereas the velocity decreases monotonically for
cases (i) and (ii) . Note also that part of the solution near the virtual origin
will be unphysical for sufficiently steep values of 0 0 , due to the model not
allowing for re-entrainment of plume fluid. In particular, for 00 = - 90° the
solution is unphysical until the flow is upward .
The overall size depends on the length scale LA defined above. For the

vertical plumes it is, however, necessary to trace the solution back to the
virtual origin to find a useful scale for the momentum flux, which can be used
to define a length-scale, L v . Because of this last feature we regard vertical
plumes as a very special case of the generality of angled plumes . This is in
contrast to the usual approach which is to consider plumes with a horizontal
component of momentum flux as merely a minor departure from the vertical
case, as is, for example, implicit in the dimensional analysis approach to
predicting maximum depth of a downward angled buoyant plume, or explicit in
the approach used by Germeles [4] .

The virtual origin angle, and thus the shape of the plume, can be deter-
mined from the source angle and the non-dimensionalised source mass flux .
While the variations of the velocities and densities from the mean and the
details of the eddies and entrainment is beyond the scope of this approach, we
have shown that the theory predicts some of the mean properties and the basic
shape of such plumes reasonably accurately . In fact the entrainment assump-
tion describes the flow surprisingly accurately, given that the observed velo-
city and density distributions are neither symmetric nor self-similar . We con-
clude that the average entrainment into the plume is described adequately by
an average entrainment velocity proportional to the mean velocity in- the
plume .
In this model we have kept a constant, though there is evidence that

the nature of the entrainment, and thus the value of a, varies for different
types of plume flow (see, for example, Turner [12] ) . Altering the value of a
alters the local length-scale and the spreading angle of the plume, and the
experimental evidence is that this reduces the difference in spreading angle
between jet and plume flows predicted by theories such as the one given
here. One may regard different spreading angles predicted by our theory
as pointing out changes in the nature of the flow, and thus the entrainment,
at different points on the plume . It would be possible to recalculate the results
with a allowed to vary according to the local nature of the flow. It is important
to note that this would not affect the result that the plume shape is entirely
determined by the virtual origin angle, since different plumes with the same
virtual origin angle would have changes, e .g. from jet to plume behaviour,
at equivalent points on the plume.
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This model does not allow for stratification in the ambient fluid . In many
cases the stratification will not be important until the plume is rising almost
vertically, where previous models (e .g . [2, 3]) can be used . Stratification will
not be important in the neighbourhood of the source provided that the density
changes in the ambient fluid over the length scale of the plume are small
compared with the density difference between the plume and the ambient fluid .
This criterion requires

N< FO /Ho ,

	

(24)
where the ambient stratification has buoyancy frequency N=(-g(Op/8z)/p)"'

When stratification is important this can be taken into account by modifying
equation (11) (the buoyancy flux is no longer constant) so that the right hand
side of the density difference equation becomes Nz VRz . However, this is not
entirely satisfactory since under such strong stratification the plume cross-
section becomes elliptical, with greater spread in the horizontal direction and
reduced spread in the vertical direction because vertical motions are impeded
by the stratification. The reader is recommended to see Hofer and Hutter [6] for
a more detailed analysis .
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